174 research outputs found

    A two-stage search strategy for detecting multiple loci associated with rheumatoid arthritis

    Get PDF
    Gene × gene interactions play important roles in the etiology of complex multi-factorial diseases like rheumatoid arthritis (RA). In this paper, we describe our use of a two-stage search strategy consisting of information theoretic methods and logistic regression to detect gene × gene interactions associated with RA using the data in Problem 1 of Genetic Analysis Workshop 16. Our method detected interactions of several SNPs (single-SNP and SNP × SNP) that are located on chromosomal regions linked to RA and related diseases in previous studies

    A novel functional module detection algorithm for protein-protein interaction networks

    Get PDF
    BACKGROUND: The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM. RESULTS: STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced and graph topology. STM is found to be effective at detecting clusters with a diverse range of interaction structures that are significant on measures of biological relevance. The STM approach is compared to six competing approaches including the maximum clique, quasi-clique, minimum cut, betweeness cut and Markov Clustering (MCL) algorithms. The clusters obtained by each technique are compared for enrichment of biological function. STM generates larger clusters and the clusters identified have p-values that are approximately 125-fold better than the other methods on biological function. An important strength of STM is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches. CONCLUSION: STM outperforms competing approaches and is capable of effectively detecting both densely and sparsely connected, biologically relevant functional modules with fewer discards

    CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative characterization of the topological characteristics of protein-protein interaction (PPI) networks can enable the elucidation of biological functional modules. Here, we present a novel clustering methodology for PPI networks wherein the biological and topological influence of each protein on other proteins is modeled using the probability distribution that the series of interactions necessary to link a pair of distant proteins in the network occur within a time constant (the occurrence probability).</p> <p>Results</p> <p>CASCADE selects representative nodes for each cluster and iteratively refines clusters based on a combination of the occurrence probability and graph topology between every protein pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained by each technique are compared for enrichment of biological function. CASCADE generates larger clusters and the clusters identified have <it>p</it>-values for biological function that are approximately 1000-fold better than the other methods on the yeast PPI network dataset. An important strength of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches which have an average discard rate of 45% on the yeast protein-protein interaction network.</p> <p>Conclusion</p> <p>CASCADE is effective at detecting biologically relevant clusters of interactions.</p

    Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multifactorial diseases such as cancer and cardiovascular diseases are caused by the complex interplay between genes and environment. The detection of these interactions remains challenging due to computational limitations. Information theoretic approaches use computationally efficient directed search strategies and thus provide a feasible solution to this problem. However, the power of information theoretic methods for interaction analysis has not been systematically evaluated. In this work, we compare power and Type I error of an information-theoretic approach to existing interaction analysis methods.</p> <p>Methods</p> <p>The <it>k-</it>way interaction information (KWII) metric for identifying variable combinations involved in gene-gene interactions (GGI) was assessed using several simulated data sets under models of genetic heterogeneity driven by susceptibility increasing loci with varying allele frequency, penetrance values and heritability. The power and proportion of false positives of the KWII was compared to multifactor dimensionality reduction (MDR), restricted partitioning method (RPM) and logistic regression.</p> <p>Results</p> <p>The power of the KWII was considerably greater than MDR on all six simulation models examined. For a given disease prevalence at high values of heritability, the power of both RPM and KWII was greater than 95%. For models with low heritability and/or genetic heterogeneity, the power of the KWII was consistently greater than RPM; the improvements in power for the KWII over RPM ranged from 4.7% to 14.2% at for α = 0.001 in the three models at the lowest heritability values examined. KWII performed similar to logistic regression.</p> <p>Conclusions</p> <p>Information theoretic models are flexible and have excellent power to detect GGI under a variety of conditions that characterize complex diseases.</p

    Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this research was to develop a novel information theoretic method and an efficient algorithm for analyzing the gene-gene (GGI) and gene-environmental interactions (GEI) associated with quantitative traits (QT). The method is built on two information-theoretic metrics, the <it>k</it>-way interaction information (KWII) and phenotype-associated information (PAI). The PAI is a novel information theoretic metric that is obtained from the total information correlation (TCI) information theoretic metric by removing the contributions for inter-variable dependencies (resulting from factors such as linkage disequilibrium and common sources of environmental pollutants).</p> <p>Results</p> <p>The KWII and the PAI were critically evaluated and incorporated within an algorithm called CHORUS for analyzing QT. The combinations with the highest values of KWII and PAI identified each known GEI associated with the QT in the simulated data sets. The CHORUS algorithm was tested using the simulated GAW15 data set and two real GGI data sets from QTL mapping studies of high-density lipoprotein levels/atherosclerotic lesion size and ultra-violet light-induced immunosuppression. The KWII and PAI were found to have excellent sensitivity for identifying the key GEI simulated to affect the two quantitative trait variables in the GAW15 data set. In addition, both metrics showed strong concordance with the results of the two different QTL mapping data sets.</p> <p>Conclusion</p> <p>The KWII and PAI are promising metrics for analyzing the GEI of QT.</p
    • …
    corecore